MEC&F Expert Engineers : 11/03/14

Monday, November 3, 2014

WATER DAMAGE CLAIMS DUE TO FREEZE-UP AND BURST WATER PIPES


WATER DAMAGE Claims DUE TO Freeze-Up and Burst Water Pipes



Compliments of the “polar vortex”, frigid temperatures in the Northeast and in the Southern States have caused many water pipes to freeze and burst.  Residential and commercial properties have been affected.  Pipe freeze-up and unfreezing damages were particularly severe in southern climates, where piping systems lack freeze protection more common in the north.  Even in the Northeast, property owners saw (and continue to see) significant pipe failures.  Most of the pipe bursts occur inside uninsulated and/or unheated janitor closets, basements, attics, exterior faucets/piping, and so on.  In some cases, fire sprinkler systems froze, allowing fire to spread due to the lack of fire protection.  Malls, restaurants and other walk-in retail establishments suffered business interruption, and some lost power as well as other utility services.
Most standard plumbing codes reference guidelines or standards in recognizing freezing of most buildings.  Typically, they are as follows:
“A water, soil, or waste pipe shall not be installed or permitted outside of a building, or concealed in outside walls or in any space where they may be subjected to freezing temperature, unless adequate provision is made to protect them from freezing.”
In your evaluation and investigation of these types of cases, you should keep in mind the absolute cause of the freeze up and determine whether or not there are issues concerning coverage, liabilities, subrogation, and ultimately evaluate the damage to determine extent of damage and reasonable cost for repair or replacement of these items.
We had already assignments for a frozen pipe activating a sprinkler system which flooded the insured’s property.  Both MSO and ISO policies contain general mitigation of damages provisions requiring insureds to take reasonable efforts to prevent further losses from occurring, such winterize the pipes in the home, maintain heat, etc. 
Ex.:  ISO Form HO 00 06 says:

We do not insure, however, for loss:
C       Caused by:
(1)    Freezing of a plumbing, heating, air conditioning or automatic fire protective sprinkler system or of a household appliance, or by discharge, leakage or overflow from within the system or appliance caused by freezing. This exclusion does not apply if you have used reasonable care to:
(a)    Maintain heat in the building; or
(b)    Shut off the water supply and drain all systems and appliances of water.
The insurance industry is presented with claims that surround freezing of water pipes that ultimately burst and result in property damage claims.  There are many causes for these claims, some of which involve the following:
1.    Improper maintenance of heat in a building or chase way (occupied or vacant).
2.    Sudden shutdown of heating system, combined with improper inspection or maintaining of heat in a building.
3.    Deterioration or lack of insulation protecting building and water piping.
4.    Mechanical or electrical malfunction of a control or product.
5.    Inadequate servicing and maintaining of piping, whether considered to be part of constant wet or water flow piping, and/or a dry pipe system, which normally does not allow constant water pressurization.



As the action or inaction of the insured is critical in determining whether coverage applies, a thorough examination of the circumstances of the loss is crucial:  these claims are fact-sensitive and we can assist you in properly developing them.
Burst pipes, flooded basements, devastating structural damage, damaged floors, ceilings, carpets, wiring, furnishings, wallboard, and mold are a few obvious results of freeze up and pipe burst damage.  These types of problems can result from maintenance problems, mechanical failure, installation errors, low temperatures maintained in buildings, or fuel delivery issues.  Be sure to learn more about METROPOLITAN’s proprietary Fuel Usage Analysis Computer Program. This computer program compares data we retrieve with energy consumption levels to validate the results of our investigation.



Why do water pipes burst in winter?

The pipe bursts always in a longitudinal fashion.   The burst always occurs at the weakest portion of the pipe.  Because of its unique properties, water expands as it freezes into ice by as much as nine percent (9%) in volume.  On the other hand, a metal pipe shrinks when frozen.  In a pipe, ice forms first on the inside wall of the pipe and grows radially inward until there is a solid plug of ice blocking the pipe. Until that situation occurs, the expansion of the freezing water in the pipe merely pushes water back into the water main. When the plug of ice completely blocks the pipe, it seals water between the plug and a closed valve. If more ice forms between the plug and the closed valve, the expanding ice has nowhere to go, and causes the pipe to burst at its weakest point.  Hot water pipes will burst much faster than the cold water pipes.
Pipe bursting occurs when
(1) Freezing temperatures create ice blockages in water pipes, then (2) Further ice growth applies dangerously high pressures to a confined water volume.
Most of the research and claims investigated by METROPOLITAN uncovers results that examine the effect upon the freezing process of five variables:
1.   Design temperature.
2.   Pipe composition, (copper or PVC).
3.   Insulation level.
4.   Pipe diameter ( 1/2” or 3/4”).
5.   Water source (cold or hot water tap).



The Freezing events in a water pipe can be sub-divided into four distinct stages:
1.   Initial cooling through super cooling.
2.   Dendritic ice formation.
3.   Annular ice formation.
4.   Final cooling to ambient temperature.

Timetables for freezing temperatures can vary, but the testing performed by the University of Illinois confirms the following:
When a water pipe is exposed to subfreezing temperatures, heat is transferred from the water, through the pipe wall and any insulation layers to the sub-freezing air.  The temperature of the water begins to fall in a steep decline. Remarkably, the water in the pipe does not immediately begin to freeze when it reaches the phase change temperature of zero degrees Celsius, but continues to fall and approach the temperature of the surrounding air.

In research tests water pipes placed in an unheated, insulated attic consistently started forming ice when the outdoor temperature dipped below 20 degrees Fahrenheit (20 degrees F).  Importantly, the 20 degrees threshold is primarily for homes in the south and other areas where freezing may occur once or twice a winter or cold season.
This process is known as super cooling. It is possible for water in a pipe to super cool for a considerable length of time before any ice forms. The temperature at which ice begins to form is known as the ice nucleation temperature. The nucleation temperature implies a starting, or a nucleus, for ice formation. It is often claimed that, when subjected to identical conditions, a hot water line will burst before a cold water line. One theory states that premature bursting is the result of greater dendritic ice formation in hot water pipes than in cold water pipes.



However, testing of water drawn from both cold and hot water taps revealed that at the time of bursting, there was no difference if the water was drawn from a cold water source or a hot water source.  Further research and investigation is required, but it is believed that a tendency for hot water pipes to burst before cold water pipes might be due to the distribution of entrapped air in residential water systems because of water heating processes.  Clearly, you should be aware that the source of the freezing temperature could be the overall environment, a broken window, or uninsulated pipe exposed to the obvious temperatures.   What occurs is an ice formation pattern in which there is the expansion of ice, or the growth of ice, through the pipe.   As the pipe continues to freeze, particularly in a vertical situation, the frontier of the ice/water climbs in the pipe.   At the same time annular ice against the pipe wall grows inward.



The Forensic Investigation
It is METROPOLITAN’s experience that there is no substitute for a thorough and comprehensive inspection of the structures to determine the number of conditions that caused the loss and whether the conditions worked independently, concurrently, or in a sequence to cause the damage.  For example, some common questions include:
·         Was the pipe frozen and burst due to lack of maintenance, wear and tear or incorrect installation? E.g., old or corroded pipes, or no proper insulation, etc.
·         Was the frozen pipe damaged due to negligence? did the insured turn off the heat in the home or commercial property during cold weather?
·         Did the boiler or furnace shutdown and caused the pipe freeze-up?  Did the boiler or furnace had a mechanical breakdown or it was shut down by the insured?  METROPOLITAN can reveal the causes of these failures utilizing mechanical evaluation of the boiler or furnace, perform a fuel usage analysis and perform an examination of the condition of the equipment installation.  We can also determine the thermostat setting temperature, or whether the fuel run out, along with the timing of these events.  METROPOLITAN will obtain a copy of the insured’s utility bill and will audit it for the purpose of making the above determinations.  Our Energy and Fuel Usage Modeling will determine what really happened and determine the cause of the pipe burst.
·         Was the pipe broken due to normal wear and tear?
A comprehensive investigation is crucial to good claims handling.  It is vitally important to conduct bench testing of boiler controls and a Comprehensive Freeze Up Loss Investigation for freeze up losses.  Courts have ruled against companies that have skimped on their investigations and rushed coverage decisions in these types of losses.  Our clients require prompt and thorough claims investigation and fact finding and METROPOLITAN delivers high quality services at a highly competitive price.



It’s getting colder and with that cold comes the hassle of frozen / broken pipes, if you don’t take a few precautions. Here are a few winterizing tips that just might keep me from having to make a service call to your house.
Hose Bibs
#1 Disconnect all hoses from your hose bibs! Most hose bibs installed these days are frost free which shuts the water off inside the wall away from the outside cold but, if you do not disconnect the hose the water stays trapped in the spout. When the water freezes it expands and will damage the hose bib. This problem is usually discovered in the spring or summer when you turn on the bib for the first time and find water is coming out of your wall. Doing this will save you a costly repair.
#2 Hose bib covers.  You can get these at any of your local home improvement stores.  They are  foam, dome shaped covers you put over your hose bib.  These covers help keep the cold away from the hose bib. Hose bib covers are more important for non-frost free hose bibs but it wouldn’t hurt to put them an all of your outdoor faucets.  Putting these on will also help to remind you to disconnect your hoses.  These covers cost about 1-2 dollars and are a wise investment.

Insulate Piping
Many people often don’t realize the importance of insulating piping until it is too late and pipes are frozen and broken.  All pipes in crawl spaces and any piping that is exposed on the outside of buildings or above the ground needs to be insulated.  Pipes in garages that are not heated are also vulnerable to freezing in cold weather and should be insulated.

Pump Houses
All exposed piping in pump houses should be insulated. It is also important to have some heat in your pump house so your piping and pressure tank do not freeze.  Your local home improvement store will have several different options for you to help keep your pump house warm and your pressure tank and piping from freezing.  Items to look for or ask about are heat wire- this is wrapped around piping and warms up when plugged in.  It keeps your pipes from freezing. Heat lamps can also be installed near your pressure tank and piping and will help keep your pressure tank and piping warm to protect from freezing.  Both of these options can be plugged into a temperature sensing plug that turns on when it gets below a certain temperature and turns off when it gets above a higher temperature.  These can also be purchased at your local home improvement store and are another great defense against broken pipes and expensive repairs.



How to keep pipes from freezing when temperature is going to drop below 32 degrees:
#1 Trickle water from a sink or two to keep water moving in your plumbing system, moving water takes longer to freeze than water that is not moving, this will help keep pipes from freezing.

#2 Open cabinet doors under sinks to allow warm air from the room to get back into the cabinet where pipes are.

#3 Turn your heat up a little warmer than normal. Warmer rooms mean warmer walls, and warmer walls help keep the pipes in those walls from freezing.

#4 Cover foundation vents around bathrooms, kitchens and laundry rooms that are on exterior walls to help keep the cold out and away from the piping in these areas. You can buy pre-formed Styrofoam blocks that fit in standard foundation vents at your local home improvement store. These covers should be removed when the risk of freezing is over in order to allow cross ventilation in crawl space areas.

#5 makes sure that all piping in attics and crawl spaces are covered with insulation. A lot of houses have blown in insulation in attics which is fine but it tends to settle and expose pipes. If you have blown in insulation inspect insulation to make sure it has not settled and exposed piping. Batt insulation is a better choice in my opinion.



How to keep this from happening again:
#1 Make sure that all piping in attics and crawl spaces are covered with insulation.  We cannot stress this enough.  This is where we saw most of the burst pipes we investigated.  Most attics have blown in insulation and it settles over time exposing pipes.  Exposed pipes freeze and burst.

#2 In older homes that contain copper or galvanized piping consider replacing with PEX piping. PEX piping may freeze but it resists breakage.  In the 1000’s of investigations we have performed, not one break was PEX related.  However, I did cut out 100’s of feet of copper and galvanized pipe and fittings.




WHY PIPES BURST
Surprisingly, ice forming in a pipe does not typically cause a break where the ice blockage occurs. It’s not the radial expan­sion of ice against the wall of the pipe that causes the break. Rather, following a complete ice blockage in a pipe, continued freezing and expansion inside the pipe causes water pressure to increase downstream -- between the ice blockage and a closed faucet at the end. It’s this increase in water pressure that leads to pipe failure. Usually the pipe bursts where little or no ice has formed. Upstream from the ice blockage the water can always retreat back towards its source, so there is no pressure build-up to cause a break. Water has to freeze for ice blockages to occur. Pipes that are adequately protected along their entire length by placement within the building’s insulation, insulation on the pipe itself, or heating, are safe.
REGIONAL DIFFERENCES
Generally, houses in northern climates are built with the water pipes located on the inside of the building insulation, which protects the pipes from subfreezing weather. However, ex­tremely cold weather and holes in the building that allow a flow of cold air to come into contact with pipes can lead to freezing and bursting.
Water pipes in houses in southern climates often are more vulnerable to winter cold spells. The pipes are more likely to be located in unprotected areas outside of the building insulation, and homeowners tend to be less aware of freezing problems, which may occur only once or twice a season.
Pipes in attics, crawl spaces and outside walls are all vulnerable to freezing, especially if there are cracks or openings that allow cold, outside air to flow across the pipes. Research at the Uni­versity of Illinois has shown that “wind chill,” the cooling effect of air and wind that causes the human body to lose heat, can play a major role in accelerating ice blockage, and thus burst­ing, in water pipes.
Holes in an outside wall where television, cable or telephone lines enter can provide access for cold air to reach pipes. The size of pipes and their composition (e.g., copper or PVC) have some bearing on how fast ice forms, but they are relatively minor factors in pipe bursting compared with the absence of heat, pipe insulation and exposure to a flow of subfreezing air.
When is it Cold Enough to Freeze?
When should homeowners be alert to the danger of freezing pipes? That depends, but in southern states and other areas where freezing weather is the exception rather than the rule (and where houses often do not provide adequate built-in pro­tection), the “temperature alert threshold” is 20 degrees F.
This threshold is based upon research conducted by the Building Research Council at the University of Illinois. Field tests of residential water systems subjected to winter tempera­tures demonstrated that, for un-insulated pipes installed in an unconditioned attic, the onset of freezing occurred when the outside temperature fell to 20 degrees F or below.
This finding was supported by a survey of 71 plumbers practic­ing in southern states, in which the consensus was that burst-pipe problems began to appear when temperatures fell into the teens. However, freezing incidents can occur when the tem­perature remains above 20 degrees F. Pipes exposed to cold air (especially flowing air, as on a windy day) because of cracks in an outside wall or lack of insulation are vulnerable to freezing at temperatures above the threshold. However, the 20 degrees F “temperature alert threshold” should address the majority of potential burst-pipe incidents in southern states.
MITIGATING THE PROBLEM
Water freezes when heat in the water is transferred to subfreez­ing air. The best way to keep water in pipes from freezing is to slow or stop this transfer of heat.
Ideally, it is best not to expose water pipes to subfreezing tem­peratures, by placing them only in heated spaces and keeping them out of attics, crawl spaces and vulnerable outside walls. In new construction, proper placement can be designed into the building.
In existing houses, a plumber may be able to re route at-risk pipes to protected areas, although this may not be a practi­cal solution. If the latter is the case, vulnerable pipes that are accessible should be fitted with insulation sleeves or wrapping (which slows the heat transfer), the more insulation the better. It is important not to leave gaps that expose the pipe to cold air. Hardware stores and home centers carry the necessary materials, usually in foam rubber or fiberglass sleeves. Better yet, plumbing supply stores and insulation dealers carry pipe sleeves that feature extra-thick insulation, as much as 1 or 2 inches thick. The added protection is worth the extra cost.
Cracks and holes in outside walls and foundations near water pipes should be sealed with caulking to keep cold wind away from the pipes. Kitchen and bathroom cabinets can keep warm inside air from reaching pipes under sinks and in adja­cent outside walls. It’s a good idea to keep cabinet doors open during cold spells to let the warm air circulate around the pipes. Electric heating tapes and cables are available to run along pipes to keep the water from freezing. These must be used with extreme caution; follow the manufacturer’s instructions careful­ly to avoid the risk of fire, and check to make sure the product conforms to UL 2049. Tapes and cables with a built-in thermo­stat will turn heat on when needed. Tapes without a thermostat have to be plugged in each time heat is needed, and may be forgotten.
LETTING THE WATER RUN
Letting a faucet drip during extreme cold weather can prevent a pipe from bursting. It’s not that a small flow of water prevents freezing; this helps, but water can freeze even with a slow flow.
Rather, opening a faucet will provide relief from the excessive pressure that builds between the faucet and the ice blockage when freezing occurs. If there is no excessive water pressure, there is no burst pipe, even if the water inside the pipe freezes.
A dripping faucet wastes some water, so only pipes vulnerable to freezing (ones that run through an unheated or unprotect­ed space) should be left with the water flowing. The drip can be very slight. Even the slowest drip at normal pressure will provide pressure relief when needed. Where both hot and cold lines serve a spigot, make sure each one contributes to the drip, since both are subjected to freezing. If the dripping stops, leave the faucet(s) open, since a pipe may have frozen and will still need pressure relief.
IF YOU SUSPECT A FROZEN PIPE
If you open a faucet and no water comes out, don’t take any chances. Call a plumber. If a water pipe bursts, turn off the water at the main shut-off valve (usually at the water meter or where the main line enters the house); leave the faucet(s) open until repairs are completed. Don’t try to thaw a frozen pipe with an open flame; as this will damage the pipe and may even start a building fire. You might be able to thaw a pipe with a hand-held hair dryer. Slowly apply heat, starting close to the faucet end of the pipe, with the faucet open. Work toward the coldest section. Don’t use electrical appliances while standing in water; you could get electrocuted.
GOING ON A TRIP
When away from the house for an extended period during the winter, be careful how much you lower the heat. A lower temperature may save on the heating bill, but there could be a disaster if a cold spell strikes and pipes that normally would be safe, freeze and burst.
A solution is to drain the water system. This is the best safe­guard. With no water in the pipes, there is no freezing. This remedy should be considered even when the homeowner is not leaving but is concerned about a serious overnight freeze.
To drain the system, shut off the main valve and turn on every water fixture (both hot and cold lines) until water stops run­ning. It’s not necessary to leave the fixtures open, since the system is filled mostly with air at that point and not subject to freezing. When returning to the house, turn on the main valve and let each fixture run until the pipes are full again.

EMERGING RISKS: VOC OFF-GASSING OF COMPOSITE PRODUCTS (SUCH AS WIND TURBINES); INHALATION OF STYRENE VAPORS DURING THE MANUFACTURE OF WIND TURBINE BLADES



EMERGING RISKS:  VOC OFF-GASSING OF COMPOSITE PRODUCTS (SUCH AS WIND TURBINES); INHALATION OF STYRENE VAPORS DURING THE MANUFACTURE OF WIND TURBINE BLADES

 

  There are a number of hazards associated with the manufacture of the wind turbine blades and other components, especially the inhalation of styrene vapors during the coating of the blades.  Following the record number of fatalities of workers in 2011, the U.S. Department of Labor’s Occupational Safety and Health Administration (OSHA) and American Wind Energy Association (AWEA) recognize the value of establishing a collaborative relationship to foster safer and more healthful American workplaces.  To that end, OSHA and AWEA formed an “Alliance” to provide AWEA’s members and others working in wind energy industry maintenance and operations with information, guidance, and access to training resources that will help them protect the health and safety of workers, particularly by reducing and preventing exposure to fall, electrical, and crane hazards, and understand the rights of workers and the responsibilities of employers under the Occupational Safety and Health Act.  OSHA also officially focused its attention onto the wind energy industry, meaning more inspections and enforcement actions against violators of worker safety laws.

The participants intend to work together to achieve the following outreach and communication goals:
  • To develop information on the recognition and prevention of workplace hazards, and to develop ways of communicating such information (e.g., print and electronic media, electronic assistance tools, and OSHA’s and the AWEA’s Web sites) to employers and workers in the industry.
  •  To speak, exhibit, or appear at OSHA’s or AWEA’s conferences, local meetings, or other events.
  • To share information among OSHA personnel and industry safety and health professionals regarding AWEA’s good practices or effective approaches through training programs, workshops, seminars, and lectures (or any other applicable forum) developed by the participants.
OSHA’s Alliances provide parties an opportunity to participate in a voluntary cooperative relationship with OSHA for purposes such as raising awareness of OSHA’s rulemaking and enforcement initiatives, training and education, and outreach and communication. These Alliances have proved to be valuable tools for both OSHA and its Alliance participants. By entering into an Alliance with a party, OSHA is not endorsing or promoting, nor does it intend to endorse or promote, any of that party’s products or services.

The turbine installation and maintenance fall accidents are very similar to the accidents occurred during the installation, disassembly or maintenance of telecommunication towers.  Nineteen workers have died in communication tower accidents since 2013, a sharp rise from recent years.  In 2014, over 20 workers have fallen to their deaths during cell tower operations.  OSHA has announced new changes in how it polices the industry, including tracking what cell carrier or tower owner subcontractors had been working for when accidents occurred.

 

 


Blade Maker Cited 8th Time in 4 Years

Thursday, April 28, 2011
A wind turbine blade manufacturer with a history of federal safety violations, including some related to a 2010 death, is now accused of having employees work in a confined space filled with excessive levels of styrene.
The Occupational Safety and Health Administration has issued 11 serious, repeat and willful citations and proposed $136,500 in penalties against LM Wind Power Blades Inc., of Grand Forks, ND.
LM, formerly known as LM Glasfiber, is already contesting three OSHA cases, including the one involving the fatality, at the same plant. OSHA records also show four closed cases with LM since 2007, including three at the Grand Forks facility.
“We take this very seriously and will continue to collaborate with authorities to ensure we maintain a safe working environment for all our employees,” an LM spokeswoman said in an email Thursday (April 28). “At this point, however, it is premature to say what our response will be.”
Chemical Exposures, Confined Space
The new allegations stem from an October 2010 inspection. Over two days, the agency said, the company allowed employees to remain at work inside the confines of a giant wind-turbine blade amid exposures to styrene that reached 2,195 parts per million (ppm), triggering air-quality alarms.
Styrene is a hazardous chemical used in fiberglass production; OSHA’s short-term exposure limit is 600 ppm; for an eight-hour shift, it is about 100 ppm, an OSHA spokesman said.
Supervisors allowed the work to continue for hours, despite air-quality readings showing excessive exposures, and did not evacuate the confined space as required—willful violations, OSHA said, that demonstrate “intentional disregard” for the law or “plain indifference” to employee safety and health. Those two citations carry $70,000 in penalties.
“The employer is well aware of OSHA requirements and has continued a pattern of failing to comply with them,” said Tom Deutscher, OSHA's area office director in Bismarck. “Despite having been cited for similar infractions in the past, the company continues to place workers in harm's way by allowing hazards to exist.”
OSHA said LM workers did not have proper protective equipment for working with styrene. “Severe chemical burns to the body were reported to the employer,” the agency said.



Repeat, Serious Violations
In addition to the willful violations, OSHA issued five repeat violations for alleged failure to:
  • Provide adequate respirators “for conditions immediately dangerous to life or health”;
  •  “Purge or ventilate” the atmospheric hazards within a confined space;
  •  Prevent employee overexposure to styrene levels exceeding the time, weighted average and ceilings limits; and
  • Implement engineering controls to ventilate the confined space.
Four serious violations also were issued for allegedly failing: to:
  • Provide appropriate personal protective equipment;
  • Conduct effective confined space monitoring;
  • Retrain employees when required; and
  • Maintain an accurate count of entrants in permit-required confined spaces.
A repeat violation exists when an employer has been cited for the same or a similar violation within five years. Serious violations reflect a “substantial probability” of death or serious injury from a hazard about which the employer knew or should have known.
The company has 15 business days to accept or contest the violations.


OSHA Record
LM Wind Power, founded in 1940 as a wood furniture company in Denmark, is the world’s largest manufacturer of wind turbine blades, with 13 production facilities on three continents. In April 2010, the company changed its name from LM Glasfiber.
The North Dakota facility opened in 1999 and employs several hundred people.
LM has a history with OSHA, with violations and allegations that include spray finishing hazards, combustible materials, fall protection and respiratory issues, noise and dust.
These cases have been closed:
·                     In 2008, LM paid $17,400 in fines (reduced from $29,000) for four serious and one repeat violation related to styrene exposure, lack of respiratory protection and other violations at the Grand Forks facility.
·                     In April 2010, the company paid $1,500 (reduced from $6,000) for two serious violations (reduced from four) and one other-than-serious violation at the same facility.
·                     Earlier this month, the company paid $2,500 to settle one other-than-serious violation (reduced from serious) at the plant.
·                     The company was also cited in 2009 for violations at its plant in McBain, MI.
The company also is currently contesting several open cases involving the Grand Forks plant:
·                     Last July, a 42-year-old plant worker was fatally crushed between two pieces of equipment. Witnesses said Joseph Francis Schaff, a father of two young sons, was working about 10 to 12 feet up on a scissor lift when he was struck from behind by a separate lift system that ran along rails fixed to the top of a concrete wall.
LM is contesting three serious and one willful violation and $92,000 in fines issued in that case.
·                     The company is also contesting two citations issued in October 2008. That fine has already been reduced to $850 from $2,975, and one serious violation has been reduced to other-than-serious.
·                     Finally, the company is appealing two serious citations (reduced from three) and a $3,000 fine (reduced from $7,875) issued in April 2007 for spray finishing hazards and other issues.

Occupational exposures to styrene vapor in a manufacturing plant for fiber-reinforced composite wind turbine blades.
OBJECTIVES:
A utility-scale wind turbine blade manufacturing plant requested assistance from the National Institute for Occupational Safety and Health (NIOSH) in controlling worker exposures to styrene at a plant that produced 37 and 42 m long fiber-reinforced wind turbine blades. The plant requested NIOSH assistance because previous air sampling conducted by the company indicated concerns about peak styrene concentrations when workers entered the confined space inside of the wind turbine blade. NIOSH researchers conducted two site visits and collected personal breathing zone and area air samples while workers performed the wind turbine blade manufacturing tasks of vacuum-assisted resin transfer molding (VARTM), gelcoating, glue wiping, and installing the safety platform.



METHODS:
All samples were collected during the course of normal employee work activities and analyzed for styrene using NIOSH Method 1501. All sampling was task based since full-shift sampling from a prior Occupational Safety and Health Administration (OSHA) compliance inspection did not show any exposures to styrene above the OSHA permissible exposure limit. During the initial NIOSH site visit, 67 personal breathing zone and 18 area air samples were collected while workers performed tasks of VARTM, gelcoating, glue wipe, and installation of a safety platform. After the initial site visit, the company made changes to the glue wipe task that eliminated the need for workers to enter the confined space inside of the wind turbine blade. During the follow-up site visit, 12 personal breathing zone and 8 area air samples were collected from workers performing the modified glue wipe task.
RESULTS:
During the initial site visit, the geometric means of the personal breathing zone styrene air samples were 1.8 p.p.m. (n = 21) for workers performing the VARTM task, 68 p.p.m. (n = 5) for workers installing a safety platform, and 340 p.p.m. (n = 14) for workers performing the glue wipe task, where n is the number of workers sampled for a given mean result. Gelcoating workers included job categories of millers, gelcoat machine operators, and gelcoaters. Geometric mean personal breathing zone styrene air samples were 150 p.p.m. (n = 6) for millers, 87 p.p.m. (n = 2) for the gelcoat machine operators, and 66 p.p.m. (n = 19) for gelcoaters. The geometric mean of the personal breathing zone styrene air samples from the glue wipe task measured during the follow-up site visit was 31 p.p.m. (n = 12).
CONCLUSIONS:
The closed molding VARTM process was very effective at controlling worker exposures to styrene. Personal breathing zone styrene air samples were reduced by an order of magnitude after changes were made to the glue wipe task. The company used chemical substitution to eliminate styrene exposure during the installation of the safety platform. Recommendations were provided to reduce styrene concentrations during gelcoating.



The Evolution of Infusion to Circumvent the Problems Posed by Styrene Regulation
The use of the resin infusion process has grown significantly in the 25 years since fiberglass boatbuilder/composite materials distributor Seemann Composites (Gulfport, Miss.) introduced SCRIMP (Seemann Composites Resin Infusion Molding Process).  In Europe, manufacturers of marine and industrial composites will have to look at infusion and other closed molding processes, due to the increased regulation of styrene,” observes infusion researcher John Summerscales, an associate professor of composites engineering at the University of Plymouth (Plymouth, U.K.). Currently, styrene exposure limits vary by country in Europe, from 20 to 100 parts per million (ppm), with the U.K. maintaining the latter. However, in 2011, the European Chemical Industry Council (CEFIC) proposed that the derived no-effect level (DNEL) for worker inhalation exposure to styrene should be 20 ppm (over an eight-hour, time-weighted average) and that this DNEL might be used to harmonize styrene exposure limits across the European Union.
The American Composites Manufacturers Assn. (ACMA) has responded to similar pressure in the U.S. by proposing an occupational exposure limit (OEL) of 50 ppm, which it says will mean “working toward a target eight-hour average exposure of approximately 35 ppm.”
Resin infusion is an extremely effective way to meet these new limits. For example, during a 2009 National Institute for Occupational Safety and Health (NIOSH) walk-through survey of the LM Glasfiber (now LM Wind Power) wind blade facility in Grand Forks, N.D., the lowest personal breathing zone measurements for styrene were among the 21 workers performing infusion, all at less than 5 ppm.



Indeed, wind blade manufacturers migrated to resin infusion and other closed mold processes between 2000 and 2005 (see Figure above), with production of large blades (length >30m/98 ft) reportedly now split between infusion (65 percent) and prepreg (35 percent). Some industry pundits predicted that the use of prepreg would increase with the quest for automation through automated tape laying (ATL) machines. However, ATL has been limited to spars so far, and industry experts like Steve Nolet, TPI Composites’ (Scottsdale, Ariz.) principal engineer/director of innovation, doubt its ability to match manual placement rates of 1,500 kg/hr (3,307 lb/hr) and targeted finished product costs of $5/lb to $10/lb.



INCREASING USE OF VOLATILE ORGANIC CHEMICALS IN COMPOSITES POSES RISKS TO CONSUMERS FROM OFF-GASSING
VOCs (volatile organic compounds) are blamed for damaging the earth's ozone layer and thereby contributing to global warming. These chemicals are also dangerous to human health. As a result of these concerns, the last twenty years have seen a concerted effort by governments to control their release into the environment.
The Importance of Control
The human body reacts to VOCs when breathed in. Some of them cause dermatitis and styrene is 'reasonably anticipated to be a human carcinogen' according to the US National Toxicology Program.  However, there is evidence that disputes this.  We believe that there individuals are more sensitive than others and this could explain the “differences” in the toxicity or carcinogenicity of these compounds.
Most advanced countries require that any production facility which uses VOC-based resins in any significant quantity has to have an emission control system as well as providing clean breathing air and protective suiting, gloves and goggles for its workers.
Industry too is striving to minimize the use of these chemicals. Styrene and other esters can leach out into the atmosphere after the composite has been manufactured, and this is known as off gassing. Automobile manufacturers have recognized a condition which they call 'sick car syndrome' and construction firms too recognize 'sick house syndrome'. Customers don't like these fumes coming from the products they buy.
Scale of the Problem
VOCs make up a significant portion of traditional resin formulations used for composites. Typically, a lay-up which requires 10 gallons of conventional vinyl ester resin would put 30 lbs of VOCs into the air. A large bathtub manufacturer could produce 250,000 tons per year of styrene fumes.
In the US, since 2006, those firms that produce more than 10 tons of volatile organic compound (VOC) emissions per year have to meet the Environmental Protection Agency's Maximum Achievable Control Technology (MACT).
Solutions
There are a number of solutions to the problem:
Chemistry



  • Resins with reduced VOC content. These are known as low-HAP resins (low Hazardous Air Pollutant). Most of these resin formulations offer a range of 32% to 37% styrene content.
  • New resins with zero VOC content. So-called green epoxy resins are versatile and are cited as a direct replacement for regular resins even in aerospace applications. These are available as one- and two-part formulations.


Physical Plant and Process Changes



  • VOC abatement equipment requires significant capital investment. Typical solutions involve incineration of fumes. A bathtub manufacturer might incinerate their ¼ million tons of styrene fumes, but for the plant to do that is well beyond the resources of most small and medium sized composite manufacturers.
  • Low emission production uses non-atomized spraying for open molding. Closed-mold resin transfer molding and closed die injection for pultrusion provide direct physical constraint of emissions.


Most smaller manufacturers combine low- or zero-VOC resins with the low emission production techniques.

Post Production Emissions
'Bake-out' is now being used by builders before occupancy of a new building.  This process is designed to drive the VOCs out of the construction materials by increasing the temperature in the building to as much as 110 deg. F. Outdoor air exchange is maintained so that hazardous gases are emitted from the building. In commercial buildings this process is carried out with all furnishings in place as composites and plastics are heavily used in the interior. The procedure takes up to two weeks and is obviously performed prior to occupancy.
At present there do not appear to be any automobile manufacturers who use bake-out, though it would seem that it would be something that the component manufacturers (e.g. composite dashboard assemblies, carpeting and so on) could carry out.

VOC Controls - the Future
Unintended consequences are often a result of legislation, and now some larger manufacturers who have invested heavily in VOC abatement are finding that their systems are so efficient that they can use resin formulations with higher VOC content than they used before. That is certainly not what the legislators intended.
Demand is driving researchers to develop 'greener' resins because it is a certainty that controls will tighten. Resins based on recycled raw materials are now being marketed.
It is inevitable that low- and zero-VOC resins will become more widely used as production volumes increase and raw material prices fall.



Metropolitan Engineering, Consulting & Forensics (MECF)
Providing Competent, Expert and Objective Investigative Engineering and Consulting Services
P.O. Box 520
Tenafly, NJ 07670-0520
Tel.: (973) 897-8162
Fax: (973) 810-0440
E-mail: metroforensics@gmail.com
Web pages: https://sites.google.com/site/metropolitanforensics/
https://sites.google.com/site/metropolitanenvironmental/
We are happy to announce the launch of our twitter account. Please make sure to follow us at @MetropForensics or @metroforensics1
Metropolitan appreciates your business.
Feel free to recommend our services to your friends and colleagues.