New Laboratory Method Evaluates Vibrations From Hand-held Riveting Tools
Recognizing this need, scientists at the National Institute for Occupational Safety and Health (NIOSH) recently developed and tested a lab-based riveting simulator that mimics the conditions observed during actual riveting tasks. The riveting simulator delivers reliable and repeatable forces to a bucking bar when measuring vibrations transmitted to the hand. With this new apparatus and laboratory method, NIOSH scientists evaluated three traditional steel rivet bucking bars and six newer bucking bars. Specifically, the newer designs included three bucking bars made from tungsten and three bucking bars with a mechanism designed to decrease vibrations. To compare to typical riveting tasks, the scientists also tested the bucking bars during three such tasks at a large aircraft maintenance facility.
They found that the laboratory method was able to identify which bucking bars would transmit the lowest exposure of vibrations to workers at the maintenance facility. They also observed that the newer bucking bars had significantly reduced vibrations compared to the traditional bucking bars. Vibration measurements in the laboratory, however, were considerably lower than the measurements produced in the maintenance facility. These findings suggest that the laboratory method is an acceptable way to compare and screen bucking bars but not to measure the risk of exposure to transmitted vibrations in the workplace. Next, the scientists plan to refine the laboratory method to better simulate actual riveting tasks and, ultimately, develop a standardized test for workplace exposure to bucking bar vibrations.
More information is available: